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1. Introduction.
Historically, by a secant method for the unconstrained optimization problem
minimize f(x) (1)
where f:IR" — IR, we mean the iterative procedure
T, =2 +s
B, =B(z,s,y,B)
where s and y are defined by
Bs = -V (z) (3)
v =/ (2,)-9/ () (4
and the update B _ must satisfy the secant equation
B,s =y . (5)

We interpret B, as an approximation to V?2f(z,) and y as an

approximation to V2f (z,.)s. Most interesting secant updates can be written in

the form
B,=B+A(s,y,B,v) (6)
where
y —Bs)vT +v(y —Bs)T y —Bs)Ts
A(s,y,B,v)= (J ) UTS (J ) _(J(UTS))2 ’U‘UT (7)

for some choice of the vector v. Following Dennis and Walker [Ref. 1] we call v
the scale of the particular secant update in question. The scale v will usually

depend on s,y or B as is the case for the following well-known updates:

PSB v =35 (8)



DFP v=y (9)

1
T
y_s I* ps . (10)
sT Bs

In what follows, we will write v(s,y, B) when the use of v alone may cause

BFGS v=9y+

confusion.

Often, in practice, a part of V2f(z) is available and we need only to

approximate the remaining part. Suppose that
V2f(z) = S(z)+C(z)

where C:IR" —IR"*", the available part of V?f(z), is symmetric. In several
important applications, e.g. nonlinear least-squares, C(z) is composed of the

first-order information and S(z) requires second-order information.

By a structured approzimation of Vf (z) we mean an approximation of the

form
B =4 +C(z)

where A is an approximation to S(z). Moreover, if B is updated according to

the formula
B,=A4,+C(z,)
where
A, =A+A(s,y%,4,v) (11)
and y* is an approximation to S(z,)s, then we call B, a

structured A approzimation of V2f (z.). Observe that the update (11) satisfies

the secant equation

A,s =yt . (12)



We obtain a structured Amethod for problem (1) if in (2) we use

B,=A,+C(z,) where A_ is given by (11).

Historically, the major issues one faces in a particular application of
structure is the choice of y# and the choice of scale v in (11). In an effort to
give a choice for y#, which could be used when the structure did not suggest a

better choice, Dennis and Walker [Ref. 1] proposed the default choice
y* =y — C(zy)s

where y is given by (4). The rationale for the default choice is quite
straightforward. This choice of y# leads to an update B,=A_, + C(z,)s which
satisfies the standard (unstructured) form of the secant equation. To see this

observe that if A (s =y —C(z,)s, then B,s = y.

The primary criticism of the default choice is that it does not take full
advantage of structure; the quantity y = Vf(z,)—V/f(z) does not exploit
structure. It has been our experience that each application of structure suggests a
choice for y* which takes advantage of structure and is superior to the default

choice.

While the ambiguity in the choice for y#* has not created serious problems
in the application of structured secant methods, the ambiguity in the choice of
scale has been the major detriment to development of successful structured BFGS
secant methods and a general convergence theory for such methods. For this
reason, we first present a fairly complete historical development of the choice of
scale for structured secant methods and then present a general rule for choosing

the scale in structured secant updates.

The primary application for structured secant methods has been the
nonlinear least-squares problem (see Section 4). Work in this area includes Brown
and Dennis [Ref. 2], Dennis [Refs. 3, 4, 5], Betts [Ref. 6], Bartholomew-Biggs
[Ref. 7], Dennis and Welsch [Ref. 8], Dennis, Gay and Welsch [Ref. 9, 10], Dennis
and Walker [Ref. 1], Dennis and Schnabel [Ref. 11}, Al-Baali and Fletcher [Ref.



12]. Xu [Ref. 13}, Mahdavi and Bartels [Ref. 14] and Toint [Ref. 15]. Several of
these works considered the structured PSB update. For the PSB update the issue

of the proper choice of scale does not arise, since the scaleis v = s.

In all these works, the general problem of how should the scale be modified
when one decides to utilize structure in the secant update is not considered.
Indeed, it is interesting that in these works only Al-Baali and Fletcher [Ref. 12]
actually carried the structure into the choice of scale. However, they gave no
convergence analysis for their structured BFGS secant method. The only works
that contain a convergence analysis are Dennis and Walker [Ref. 1] and Xu [Ref.
13]. Dennis and Walker, as an application of their general theory, established
local and superlinear convergence for the structured PSB and DFP methods in
general and for the nonlinear least-squares problem in particular. Their theory
does not include structured BFGS secant methods. On the other hand, the BFGS
secant method for the nonlinear least-squares problem studied by Xu in Ref. 13
(see Ref. 12) is only mildly structured in that it utilizes structure in the choice of
y as an approximation to V?2f (z,)s, but not in B,. As such, g-superlinear
convergence follows from the standard theory by viewing their choice for y as a

perturbation of the standard unstructured choice for y.

The nonlinear least-squares problem is an important problem and the use of
structure is a significant part of the formulation of any secant method for this
problem. These two facts have been reinforced by the popularity and success of
the NL2SOL code of Dennis, Gay and Welsh [Ref. 9, 10]. This code originally
used the structured DFP secant update analyzed by Dennis and Walker in Ref. 1,
but now uses the structured BFGS secant update suggested by Al-Baali and
Fletcher in Ref. 12. While the authors report improved numerical results, there is
no local convergence theory for the new version of the algorithm. This lack of

theory played a major role in motivating the present work.



Another important application of structured secant methods was given
recently by Tapia [Ref. 17|. He extended the class of secant updates given by (6)-
(7) to updates for equality constrained optimization which utilize the structure
present in the Hessian of the augmented Lagrangian. Local and g¢-superlinear
convergence for the DFP and BFGS versions of these structured secant methods

was established under standard assumptions.

A close look at the ingredients in Tapia’s theory [Ref. 17] reveals a structure
principle which we can extract and use to formulate a general rule for defining
the scale in any structured secant update. This structure principle also provides
an insightful way of viewing the structured secant approximation when

formulating our convergence theory.

Structure Principle. Assume that V2f (z) = S(z) + C(z). Given
B=A+C(z)
as an approximation to V2f (z) we want
B, =A,+ C(z,)

as an approximation to V2f (z_), where 2, =z + s.

Compute B as an update of A 4+ C(z). Toward this end consider
yS =y* + Clz,)s ,
as an approximation to V2f (z,)s and let
BS =A + C(z,).
The secant update of BY is
B, = BY + A(s,yS,BS,v(s, yS,BS)).

Now, observe that for any v



As,y5,B%,v)=A(s,y*, A, v)
so that we can write
B,=A+C(z,)+ Als,y*,4,v(s,y°, B)).
It now seems reasonable to define
A, =A +A(s,y*,A4,v(s,y%, BY)). (13)
and call it the structured secant update of A.

Remark 1.1. Clearly A, given by (13) satisfies the secant equation (12).

Remark 1.2. In essence the structure principle is saying that the scale

should take structure and the complete problem into account.

Remark 1.3 For the PSB update the structure principle leaves the scale

unchanged.

Remark 1.4. In his application [Ref. 17|, Tapia calls the update A, which

results from the structure principle the augmented scale secant update.

Remark 1.5. In the remainder of this paper, when we refer to the structured
BFGS secant update, we will assume that in (7) the scale is v(s,y”, B5) where

v(s, y, B) is given by (10).

Remark 1.6. For the nonlinear least-squares problem our structured BFGS

secant update is the same as that suggested by Al-Baali and Fletcher in Ref. 12.

In our analysis, we will use several different matrix norms. The Frobenius

norm will be denoted by ||- ||z, the Frobenius norm weighted by V?2f (z,) will
be denoted by ||« ||+, i.e. ||* ||« = V23S (@)~ V3 )V (2¢)"V?||F and the
lo-operator norm will be denoted by || ||. The only vector norm that will be

used is the Euclidean norm, and it will be denoted by || - |].

The standard assumptions for problem (1) are:



Al: Problem (1) has a local solution z«

A92: The function f € C?, and V2f and C are locally Lipschitz continuous at
2+, i.e., there exist constants L >0, L¢ >0 and €¢; > 0 such that

|V2f (2)=V2f (@)l L |lz =2 | (14)
and
llc(z) =zl L Le ||z =z | (15)

forz €Dy = {z: ||z — 2« | < &}

A3: The matrix V2f (z) is positive definite, i.e., there exist positive constants

m and M such that

m |z |2<2TVf(2)z M Wz [|> forall z€R" . (16)

In this paper we will consider only the structured BFGS secant method. In
Section 2 we prove that the structured BFGS approximations to the Hessian
satisfy a surprising and strong form of bounded deterioration. In Section 3 we
establish local g-superlinear convergence for the structured BFGS secant method
using the Broyden, Dennis and Mor€, Dennis and Moré€ and Griewank and Toint
theories [Refs. 18, 19, 20]. Finally, in Section 4 we use this theory to prove the
local g¢-superlinear convergence of the structured BFGS secant method used in
the current version of the popular NL2SOL code for nomnlinear least-squares

problems.

2. Bounded Deterioration for the Structured BFGS Update.

Our objective in this section is to demonstrate that the structured BFGS
approximations to the Hessian satisfy the bounded deterioration principle given
by Dennis in Ref. 21 and popularized by Broyden, Dennis and Mor¢€ in Ref. 18.

Moreover, we will prove that the BFEGS secant updates satisfy a surprising and



stronger form of this principle. Specifically they satisfy, for z and B sufficiently

close to z« and V?2f () respectively, the condition
B+ =V (z) |+ < ||B=V?f(2:) ||+ +a0(2,2,) (17)

where o{u,v)=max {||u —z« ||, ||v — 2 ||}, and « is a nonegative constant.

This fact will allow us to use the Broyden-Dennis-Moré€ theory to establish
that under the standard conditions the sequence {z; } generated by a structured
BFGS secant method is locally g-linearly convergent to z+. The g¢-superlinear
convergence will then follow from Proposition 4 of Griewank and Toint [Ref. 20]

and the Dennis-Mor€ characterization [Ref. 19].

The bounds needed to prove inequality (17) when the structure in the
Hessian is not used follow from the fact that y is a good approximation to
V2f(z+)s and Assumption A3. We formalize this fact in the following

proposition.

PROPOSITION 2.1. Assume that Standard Assumption A3 holds and let D be
a neighborhood of x.. For z,,z,€D define s =z,—2z, and let y be an

approzimation to V2f (z4)s. If there exists K| > 0 such that
lly = V2 (@) || LK o2y, 2) |ls ] (18)
forall x\,2, €D, then the following inequalities hold:

y Il S (M + K0 (2, 22) s ] (19a)

yTs S(M+K0(zy,25)) s |2 (19D)

where M 1s given in Standard Assumption A3. Moreover, there exist positive

constants €,, and B such that the following inequalities hold:

yT's 28 |ls 17 (202)
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Hy Il 1l o M Ko
Al VO e
yTs -8 8

for z,,2,€Dy={x: He —z || <e} CD.

oz, z,), s%#0 (20Db)

Proof. Let z=y —V?2f(2:)s and z,,2,€D. Then (19) follows directly
from inequality (18) and Standard Assumption A3. To define D,, choose ¢, so
that K, ¢, <m and D,CD, where m is given in Standard Assumption A3. If
T, 2o €Dy, then (20a) follows from Standard Assumption A3 with 3=m — K €,.
Finally, notice that for s #0

Hy s 11 _ Hy Il s 117
Y T ”3 ” Y Tg
so that (20b) follows from inequalities (19a) and (20a). °

Similarly, when the structure in the Hessian is used, the bounds needed to
establish bounded deterioration (17) follow from Standard Assumption A2 and
A3, and the fact that y# is a "good" approximation to S(zx)s. We formulate

this fact in the next proposition.

PROPOSITION 2.2. Assume that Standard Assumption A2 holds and let D be
a neighborhood of zs«. For z,,z,€D define s =x,—1z, and let y* be an

approximation to S(zy+)s. If there exists K5 > 0 such that
lly#* —S(ze)s || L Kyo(zy,25) [[s 1] (21)

Jor all z,,z,€ D, then there exists K3> 0 such that yS =y* £ C(Z)s for any

T €z, zo) satisfies
llyS = V2 (a:)s || < Ko (y, 20) s | (22)

for all z,, x5, €D, ND where D is given in Standard Assumption A2.
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Proof. Let z,,2,€D,ND. Taking advantage of the structure in y% and in

the Hessian, we can write
Ny =21 (@)s || < Mly# = S(ze)s ||+ [[CF)— Clax)]s |
S Kyo(zy,2o) [|s [| + Lo |17 =2 [ ]s ||

S(Ko+Le)o(zy,zo)lls ] °

The next lemma is very useful when dealing with weighted Frobenius norms.

Particular cases of it were established by Powell and by Griewank and Toint
[Ref. 22, 20].

LEMMA 2.3. Consider a symmeltric matriz B €R"*" and vectors u,z ER".
Suppose that

uTu=1 and wTBu =(uTz)?. (23)

If we define

then

BTN = NF =1 1% — {0 =T e 2T B — (TP} (29

- . " : v Bv
Moreover, if B 1s symmetric and positive definite, u = and z = —
”'” ” vT By
for some vector v EIR™, v #0, then
B —I|lr < [B=1llF. (26)

Proof. The first part, (25), is a straightforward application of 4 17 =
trace (ATA), trace (A +B) = trace (A)+ trace (B), and trace (zy T)= 2Ty,
Observe that
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(B'=DT(B'=1)=(B-0)T(B-1)+B ~I)wu’ +uwT (B ~I)
—-(E—I)zzT—zzT(E—I)+(uTu)uuT
+(sz)zzT—(uTz)uzT—(zTu)zuT

and so

trace (B"—I)T(B"—1I) = trace (E——I)T(E——I)+2uT(§—I)u
—22:7‘(5—1)z:-{-(uTu)2+(sz)2—2(uTz)2 :
Finally, we obtain (25) using (23).

To demonstrate (26), notice that the given w and z satisfy (23) for any
vector v #0. Therefore, (26) will be true if 27 Bz —(zT2)2>o0.

Using the definition of z we have

2

vT B3y

vIT B
vT By

- vITB% - vT By —(vT§v)2
vT By ‘

2TBz —(2T2)2 = =
(vTBv)?

We will now show that the numerator of the last expression is positive. From

the Cauchy-Schwarz inequality we have

_ — _ _ _ — 0 T2
WP oTBe = |15 (1B | = (1520 1| 152 1]

§ 9

> [(53/20)T(§1/2v)] = [UTEQU] ..

Now we establish the bounded deterioration principle for the (unstructured)
BFGS secant approximations. The proof is based on the approach used by
Griewank and Toint [Ref. 20] for the Broyden convex class of secant updates.
However, our result is stronger than the specialization to the BEGS of their result
(we obtain a sharper bounded deterioration inequality). Moreover, in order to
fully expose the ideas involved, we will not assume that the problem has been

transformed so that the Hessian at z. is the identity matrix.
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THEOREM 2.4. Suppose that Standard Assumption A3 holds. Let B, be the
(unstructured) BFGS secant update, i.e.

B+=B+A(S,y,B,’U) (27)

where s =x, —2x, the scale v s given by (10) and y is an apprommation to

V2f(z+)s. If y satisfies inequality (18), then the bounded deterioration inequality
By —V2f (@)l < ||B =V (@) ]+ + o (z,2,) (28)
holds whenever z,z, €D ,, where D, is given in Proposition 2.1.

Proof. Let B" =V?2f(z.) and r,7, €D, Recall that the BFGS secant

correction, (7) with (10), can also be written as

T T
Bss* B
BFGS(s,y,B)=Y4_ — 29
( ) yTs s T Bs (29)
(see Chapter 9 of Dennis and Schnabel [Ref. 11]). Define
B =B +BFGS (s,B"s,B) . (30)

The idea of the proof is to determine bounds on [|B,—B’||+ and
|[|B"=B" ||« in terms of I|1B —B* ||+ and then apply the triangle inequality to
obtain (28). Notice below that the strong form of bounded deterioration given
by (28) is a consequence of the fact that the difference between B, and B’ does

not depend on B.

The bound on ||B'—B* ||+ follows from (26) in Lemma 2.3. If
§'=B*_1/2B'B*_1/2, B =B*"1/2BB*~1/2 and v = B*!/%s we can write
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1B°=B" ||« = [|B"=Y*B"=B")B" ||z = ||B"~I ||p

= ||B*-Y2|(B-B" +

B'ssTB”  BssTB B2,
sTB"s sT Bs

B'1/2ssTR*Y2  B*-1/2Bss T pp*-1/2

= B"1B ~B")B 14

|l

||B*1/25 |2 B sTBs
= T Bv(Bv)T
=||B-1+-2% _— — .
Therefore, by (26)
I1B=B"|l. < [|B-B"||. . (31)

To derive a bound on ||B+ —B’||+, observe that

yy T _ B*ssTB*

B, —B =
* yTs sTB*s

y(y —B"s)T
yTs

1 1

yTs sTB*s

(y—B's)sTB*

T ¥
s* B +
y sTB*s

.+.

Using A3, (18), (19), (20) and ||y T ||z = ||z || llv ||, we have
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15, =5 |l < Ao Ll =875 1, Wy 118" 11y =575 1 lls ],

yTs yTs -sTB*s
oy =B 11115 |l
sTB*s
<Ay lllls Il My =B"s1l |
- yTs IE
w Ay s U 1B" s 1P Ay =B*s |l |
yTs sTB*s 18
y My =8"s |l IB" [lls |I?
s ” sTB*s
(M +Kyo(z,2,) M+Ko(z,2,) a M
S /3 + ﬂ W-{-H Klo-(x7x+)
(M +Key, M+Kie o
< 5 + 3 —rﬁ——}-? Koo(z,z,).
Therefore
1B, =8Il < B |I*[|1B,—B|Ir
(32)
Soo(z,zy),
where
K, |M4+Kie, M M
= 14— —1.
“ m I} (1+ m)+ m
Finally, using the triangle inequality, (31), and (32), we have
[1B,~B"|l. < IB.—B|l.+ [|B"=B" |[.
(33)

<ao(e,z)+ 1B =B 1I.,

which is the strong form of bounded deterioration that we set out to prove. e
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Finally, we prove an analogous result for the structured BFGS secant

approximations.

THEOREM 2.5. Suppose that Standard Assumptions A2 and A3 hold. Let
B be the structured BFGS secant update, 1.¢.,

B,=A,+C(z,) (34a)

where
A=A +A(s,y#,A,'v(s,yS,BS)), (34b)

s=1x,—x, the scale v is given by (10), and y¥ and y* are approzimations to
V2f(2)s and S(z«)s respectively such that y5 —y* = C(T) for any 7 € [x,z,].
If y* satisfies inequality (21), then there exists a neighborhood D5 of z+ such that

B, —=V2f (@)l < 1IB =V (@) ||+ + 0 (2,2.) (35)

holds whenever z,2, €Dy =D ND,, where D; and D, are given in A2 and

Proposition 2.1 respectively.

Proof. Let B*=V?2f(z:), BS =A + C(7) and restrict D; as needed so
that BY is positive definite.

Now, using (34) and the following simple observation (which we commented

about in Section 1):
Afs, y# . A,0) = Als, y5,B% v)

we have for 2,2, €D3
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B, =4,+C(z)
=A +A(s,y%,4,0)+ C(z,)
=A +A(s,y%,B5, v)+C(z,) (36)
=B5 —C(z)+A(s,y5,B%,v)+ C(z,)
=B +A(s,y%,B%,v)+ Clz,)—C(z) .
Since  Proposition 2.2 allows us to wuse Theorem 2.4, and
BS =B + C(z)— C(z), we can write
[1B.=B" [l < |1B® +A(s,4%,B%,v)=B" |l. + l|C(z,) - C(z) |l
< IB*=B" ||+ +ayo(z,2,)+

+ Vo Lo 1B IR (Nloy =2 |1+ 17 =22 )

3 2Vn L
< B =B Il + 10@) = 0le) Il + ayo(e, 2+ Tt o,
. 4V,
<118 =B Il. 4oy + o (a2,
o , VnLg
which is (35) with oy =a; + ———— where o is given in Theorem 2.4. °
m

3. Local Convergence Theory.

In this section we will establish the local and ¢-superlinear convergence of
the structured BFGS secant method defined in Section 1. Our approach will be
to use the results of Section 2 and the Broyden-Dennis-Mor€ theory to prove local
¢-linear convergence. Then we use (36), Proposition 4 of Griewank and Toint
[Ref. 20] and the Dennis-Mor€ characterization [Ref. 19] to obtain ¢-superlinear
convergence. For completeness we restate the Griewank-Toint proposition as

follows.
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PROPOSITION 3.1 (Griewank and Toint [Ref. 20]). Suppose that Standard
Assumptions A1, A2 and A3 hold. Let {x,} be a sequence which converges to z,

and satisfies

Sz =2 [l < o0 (37)
k>0
Also, let {B,}, the approximations to the Hessian, be generated by (2) and (6)-(7)

starting with a symmetric positive definite matriz By. Then

o2
. (B, — V21 (2))s; | _0 (38)
P 15 1]

The next theorem gives sufficient conditions to insure local g¢-superlinear

convergence for the structured BFGS secant method.

THEOREM 3.2. Suppose that Standard Assumptions A1, A2 and A8 hold. If
s=x,—1, y° and y¥ are approzimations to V2f (z+)s and S(z+)s respectively

such that y° —y# = C(Z)s for some T €[z,z,], and y* satisfies

ly# —5(@)s || < Koy, 25) |5 |]

for x,,2,€D and some K, >0, then there exist positive constants €, & such that
Jor z,€R™ and symmetric Ay ER™ "  satisfying ||lzg—z+ || <€ and
[|4o—S(z:) || <8 then sequence {z,} generated by the structured BFGS secant

method for problem (1) is q-superlinearly convergent to T+.

Proof. As was the case in Dennis and Walker [Ref. 1] the local g¢-linear
convergence is a straightforward application of bounded deterioration (Theorem
2.5 in this case) and the standard Broyden-Dennis-Mor€ theory. Let
B* =V?2f(z:) and A, =S (z,).
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Since B” is positive definite, there exist neighborhoods V| of z, and N, of
B’ which are sufficiently small so that N, CD, N, contains only positive
definite matrices and z,€Dj3 for every (z,B)EN,;XN, Now, choose a
neighborhood N3 of A, and restrict N, as needed so that (z,A)EN =N; X N,
implies that A + C(2) € N,

Theorem 2.5 allows us to use Theorem 3.2 of Broyden, Dennis and Moré€
[Ref. 18] to prove that {z,} converges ¢-linearly to z,. Now since the difference
between B, the structured BFGS secant update, and an (unstructured) BFGS
secant update is of size o(z,z,) (see (36)), we can use Proposition 3.1 to prove
that the sequence of structured BFGS secant updates satisfies Limit (3.2).

Finally, from Theorem 2.2 of Dennis and Mor€ [Ref. 19] we conclude that the

rate of convergence is g-superlinear. e

4. Application to Nonlinear Least Squares.

In this section we apply the result of Section 3 to establish the local and ¢-
superlinear convergence of the structured BFGS secant method for the nonlinear
least-squares problem and implemented in the current version of the NL2SOL
code given in Refs. 9 and 10. Our presentation of the nonlinear least-squares

problem follows Chapter 10 of Dennis and Schnabel [Ref. 11].

The nonlinear least-squares problem is

minimize [ (z) = —;—R(a:)TR(x) =

Lo | =

g)l ri(z)? (39)

where m >n, the residual function R:IR"® —IR™ is nonlinear and r;(z) denotes
the i™ component function of R(z). Straightforward calculations show that the

gradient of f is given by
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V/(z) = J(z)TR () (40)

where J(z) denotes the Jacobian of R at z, and the Hessian of f is given by

V2 (2) = C(z)+5(z) (41)

where
Clz) = J(z)" J(z), (42a)
S(@) = 33 1l@) Vini(a), (42b)

t=1

and V2r,(z) is the Hessian of r; at z.

As we mentioned in the introduction, the use of structure is an important
part of the formulation of any secant method for the least-squares problem (39).
Among all the suggested secant formulations for this problem, one of the most

popular and successful is the NL2SOL code of Dennis, Gay and Welsch [Refs. 9,
10]. The choice of y* used in this code is

vt = -] R (43)

which was given by Dennis [Ref. 4] and, independently, by Bartholomew-Biggs
[Ref. 7].

The NL2SOL code originally used the structured DFP secant update ((7)-(9))
suggested by Dennis and Welsh [Ref. 8] and analyzed by Dennis and Walker
[Ref. 1], but now it uses the structured BFGS secant update ((7)-(10)) suggested
by Al-Baali and Fletcher in Ref. 12. While the authors report improved
numerical results, there is no local convergence theory for the new version of the

algorithm. We will establish such theory in the next paragraphs.
Consider the following standard assumptions for problem (39).

Al: Problem (39) has a local solution z«.
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A2: The function f € C? and J and V?2f are locally Lipschitz continuous at z.,
i.e., there exist L, L,, and € such that
[|7(2) =T (@) || Ly [le =2 |] (44a)
and

V2 (@)= V2 (@) | < Ly [l 2. (44b)

fore €D ={z: ||z —z. || <€)
A3: The matrix V2f (z.) is positive definite.

The following lemma serves as the foundation of our convergence result.

LEMMA 4.1. Suppose that the standard assumptions for problem (39) hold.

Then there exists a positive constant I such that
y# —S(ze)s || K Ko(z,24)|]s || (45)
where y¥ s given by (43), z, 2, €D, and s =z, — 1.

Proof. Observe that by adding and subtracting the appropriate term we

have
y# —S(z4)s = J('I+)TR($+)_J(x)TR($+)—S(-T*)3
=¥/ (@)= VI (5) = J(2)T [R () =R (2) = T(a)s | (ag)
- [J(a:)—J(x*)]TJ(x;)s —V2f(z4)s .

From (44) and Lemma 4.1.15 in Dennis and Schnabel [Ref. 11] we have

VS (2,) =V (2)=V3f (z.)s || < Lyo(z,2,)]]s ] (472)

and
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[R(z.) =R ()= J(ze)s || S Lyo(z,zy)|ls || (47b)
Therefore, using (46) and (47)
ly# =S(z)s || S Loo(z, o) lls [+ (17 (2) [1L1o (2, 24) |ls |
+ 7@ Ly e =2 [ ]s ]

< Lot (Bt L)L+ Loy [o@ ) s |

where L« = || J(z¢) |]. o

THEOREM 4.2. Suppose that the standard assumptions for problem (39) hold.
Then there exist positive constants €, O such that for £y €R"™ and symmetric
AgER" satisfying ||zg—z« || <€ and ||Ag—S(z:)|| <6 the iteration
sequence {z; } generated by the structured BFGS secant method for problem (39) is

q -superlinearly convergent to z«.

Proof. The proof of this theorem is a straightforward application of

Theorem 3.2 and Lemma 4.1. °

5. Conclusions and Summary.

In this paper we have defined, and established the local and ¢-superlinear
convergence of, the structured BFGS secant method for unconstrained
optimization. Moreover, we have introduced the structure principle as a tool for
formulating the appropriate scale in any structured secant update for a
particular problem or application. Indeed, in his Ph.D. thesis [Ref. 23], Martinez
deﬁne‘, and derived a convergence theory for, structured secant methods
generated from the entire Broyden convex class, using this structure principle to

extend the definition of the scale from unstructured to structured applications.
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Although additional work is needed to develop a global convergence theory
for these structured algorithms, we think that the surprising and stronger form
of bounded deterioration proved here may be useful in the development of this

global theory, especially in the constext of a trust region globalization strategy is

used.

Finally, as a direct application of the theory given in this paper, we gave the
first proof of local and g¢-superlinear convergence of the important structured
BFGS secant method for the nonlinear least-squares problen which is used by

Dennis, Gay and Welsh in the current version of the popular NL2SOL code.
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